- ');
$head_text_off=strpos($news_text, '');
$head_text_t=substr ( $news_text, $head_text_on, ($head_text_off-$head_text_on) );
$text_news_on=strpos($news_text, '');
$text_news_t=mb_substr($news_text, ($text_news_on), 1024);
$news_integer[0]=$head_text_t;
$news_integer[1]=$text_news_t;
$news_integer[2]=str_replace("viewtopic.php?f=19&t", "newspage.php?news", $adres);
echo $img_text_t;
return $news_integer;
}
//------------------------------------------------------------------------------------------------------------
// функция обслуживания страницы "химические рецепты для производства"
function chem_prod($n_prod, $read_file) {
for($i=0; $i
"; } $n_url=array_reverse($n_url); $n_url=implode("", $n_url); $chem_prod[0]=$n_url; if($n_prod===NULL) {$chem_prod[3]="В этом разделе Вы найдете полезные рецепты паст, растворов, смесей для вашего производства и бизнеса, использование которых облегчит труд рабочих и повысит производительность их труда, его качество, увеличит срок службы оборудования и инструментов, что, в конце концов, экономит Вам немалые денежные средства.
Все предлагаемые на web-сайте Techemy рецепты, подтвердили свою техническую и экономическую эффективность в реальных производственных условиях. Рецепты разработаны или доработаны нашими химиками-технологами в процессе их трудовой деятельности и создавались по заказу производства.
Предлагаемые нами рецепты, в большинстве случаев не являются продуктом современных высоких технологий, для их приготовления не требуется специфических веществ, которые очень сложно достать или (и) их цена слишком высока, поэтому, наши химические рецепты эффективны в условиях реального производства, имеют низкую себестоимость и высокую окупаемость.
Если Вам необходим какой либо рецепт, который по вашему мнению будет выгодным для вашего производства и бизнеса, Вы можете обратиться к администрации techemy.com, с запросом на разработку необходимого вам продукта, по адресу techemycom@gmail.com.";} else { $p=substr($n_prod, 5, 2)*1-1; $chem_prod[3]="
".$chem_product[$p][3]."
Все электронные книги из химической библиотеки можно скачать бесплатно.
Библиотека дополняется новыми экземплярами электронных книг и статей по химии. Если у вас есть желание поделиться редкими копиями книг с пользователями и гостями techemy.com Вы можете отправить копию на E-mail: techemycom@gmail.com.
Для облегчения поиска нужной литературы, библиотека разбита на разделы. Если известно название или автор книги, статьи, можно воспользоваться поисковой формой.";
for($f=0; $f ";
$chem_branch[2]=$n_book_branch;
}
$chem_branch[3]="· ".$all_books[sizeof($read_file)-1][4]."";
$chem_branch[4]="· ".$all_books[sizeof($read_file)-2][4]."";
return $chem_branch;
}
function save_libr($bra_lib, $id_libr, $read_file, $url_get) {
for($f=0; $f
Распространение платины в природе. Физические свойства платины. Применение платины. Химические свойства платины. Соединения платины Pt0. Нулевая, как и отрицательная степень окисления платины проявляется в соединениях донорного и акцепторного типа, например с СО, PF3, CN-. Известны комплексы в которых роль лиганда играет молекула O2: Pt(O2)[Р(С6Н5)3]2. Так, Pt[Р(С6Н5)3]4 поглощает кислород: а образовавшийся Pt(O2)[Р(С6Н5)3]2 является окислителем, например: при гидролизе дает пероксид водорода. Соединения Pt(II) Соединения платины (II) как правило обладают интенсивной окраской. Ориентация в кристаллах и комплексных соединениях платины (II) квадратная. в кристаллах PtO и PtS атомы Pt окружены четырьмя атомами кислорода или серы по вершинам четырехугольника. Но есть и вполне объяснимые исключения, например, Хлорид платины (II), красно-черные кристаллы PtCl2 состоят из октаэдрических кластерных группировок Pt6Cl12. Дихлорид платины может быть получен непостредственно реакцией порошка платины с хлором при 500°C, при 250°C получится тетрахлорид платины. Примером нейтральных комплексных соединений платины (II) могут служить соединения типа [Pt(NH3)2R2] (где R = Сl-, Вг-, NO2-). Для соединений этого типа характерна цис-, транс-изомерия. Например, составу [Рt(NН3)4Сl2] отвечают два соединения, которые отличаются свойствами, в частности окраской: цис-изомер — оранжево-желтый, транс-изоиер — светло-желтый. Цис- и транс-изомеры всегда имеют несколько (аиногда и сильно) различающуюся растворимость в воде, кислотах, а также кинетические и термодинамические характеристики. В отличие от транс-изомера, цис-изомер обладает ярко выраженной противораковой физиологической активностью. Различны и способы получения этих изомеров. Цис-изомер образуется при замещении двух хлорид-ионов молекулами аммиака в тетрахлороплатинат (II)-комплексе: Транc-изомер получается при замещении двух молекул аммиака на хлорид-ионы в комплексе тетрааммин-платина (II): Для понимания направления течения реакций замещения лигандов в комплексах важное значение имеет принцип транс-влияния («Поведение комплексов зависитот трансзаместителей»), установленный И. И. Черняевым (1926). Согласно этому принципу некоторые лиганды облегчают замещение лигандов, находящихся с ними в транс-положении. Таким образом, при синтезе соединений платины играет важную роль не только природа реагентов, но и порядок их смешения, временные и концентрационные соотношения: в зависимости от условий синтеза могут быть получены изомеры положения. Трансзаместители находятся на линии (координате) проходящей через центральный атом, цисзаместители находятся как бы сбоку от центрального атома — на линии (координате), не проходящей через центральный атом. Экспериментально установлено, что для соединений Pt (II) транс-влияние лигандов увеличивается в ряду Принцип транс-влияния сыграл выдающуюся роль в развитии синтеза комплексных соединений. Одним из хорошо изученных комплексов платины, носящих имя его открывателя, является соль Цейзе K[PtCl3(С2H4)]. Это окрашенное в желтый цвет соединение было синтезировано датским фармацевтом Цейзе еще в 1827г. Соль Цейзе — одно из первых синтетически полученных металлоорганических соединений; одним из лигандов в координационной сфере платины (II) здесь является этилен (донорные свойства проявляет двойная связь Н2С=СН2).
Соединения Pt(IV) Соединения платины (IV) обладают коричневой окраской различных оттенков. Координационное число в комплексных соединения равно 6, что соответствует октаэдрической конфигурации комплексов. Для тетрагалогенидов очень характерно взаимодействие с галогеноводородными кислотами и основными галогенидами с образованием комплексов типа [PtHal6]2- (Hal = Cl, Br, I): Ионы [PtHal6]2- (за исключением [PtF6]2-) очень устойчивы. Так, при действии AgNO3 на растворы гексахлороплатинатов (IV) образуется светло-бурый осадок Ag2[PtCl6], а не AgCl. В противоположность Na2[PtCl6] гексахлороплатинаты (IV) К+, Pb+, Сs+ и NH4+ плохо растворяются в воде и выделяются в виде желтых осадков, что используется для открытия указанных ионов в аналитической практике. Помимо [PtX6]2- (X = Cl-, Br-, I-, CN-, NCS-, ОН-) известны многочисленные анионные комплексы с разнородными лигандами, например, ряда: Некоторые из платинат (IV)-комплексов этого ряда могут быть получены при гидролизе PtCl4: или действием щелочей на хлороплатинаты (IV):
Соединения платины (VI). Электролиз щелочных растворов с использованием платиновых электродов приводит к образованию на поверхности платинового анода трехокиси платины или оксида платины (VI) PtO3. Трехокись платины с гидроксидом калия дает соединение К2О*3PtO3. Соединения шестивалентной платины проявляют более выраженные кислотные свойства по сравнению с соединениями двух- и четырехвалентной платины. при сжигании платины во фторе образуется гексафторид платины PtF6 фторид платины (VI), это летучее кристаллическое вещество (т. пл. 61°C, т. кип. 69°C) темно-красного цвета. В 1960 г. Бертлетту (Ванкувер, Канада) обнаружил, что гексафторид платины является сильнейшим окислителем, который сособен оторвать электрон от молекулярного кислорода. В последствии, благодяря этому открытию было положено начало химии кислородных и фторидных соединений инертных газов. Сродство к электрону в гексофториде платины равно 7 эВ. Считается, что PtF6 является более сильным окислителем чем молекулярный фтор, и вообще самым сильным окислителем из известных на сегодняшний день. Так например, при взаимодействии с водой гексафторида платины образуется молекулярный кислород, гексафторид платины легко разрушает стекло и окисляет молекулярный кислород. Гексафторид платины окисляет инертный газ ксенон с образованием устойчивого при 20°C соединения оранжевого цвета Xe[PtF6]
".$all_books[$f][4]."
";
}
$branch_book[]=$all_books[$f][1]; $n_book_branch=array_count_values($branch_book);
}
if($tab_book_list[1]!==NULL){$tab_book_list[0]="
";} else {$tab_book_list[0]="id
название
";}
$chem_branch[1]=$tab_book_list[0].$tab_book_list[1]."в данном разделе электронная литература по химии отсутствует
химия для специалистов, любителей, заинтересованных в химической науке
В природе платина встречается в россыпях в виде крупинок, всегда содержащих примесь других платиновых металлов. Редко платина встречается в виде самородков. Наиболее богатые месторождения платины находятся в России, на Урале. Большое количество платины добывают в Южно-Африканской Республике.
Плотность платины при 20°C составляет 21,45 г/см3.
Температура плавления: 1769°C.
Температура кипения: 4530°C
Платина представляет собой белый блестящий ковкий металл, не изменяющийся на воздухе даже при сильном накаливании.
Ввиду тугоплавкости и химической инертности, платина широко применяется в научных, исследовательских и производственных химических лабораториях.
В аналитической работе, платину используют в виде чашек, электродов, тиглей и т.п. Платина применяется как катализатор, ускоряющий многие химические процессы. Мелко раздробленная платина может адсорбировать большие количества водорода и кислорода (до 100 объемов газа на 1 объем металлической платины).
В своих соединениях платина, как правило, двух- и четырехвалентна. Как в первом, так и во втором состоянии платина способна образовывать комплексные соединения. Более важны соединения четырехвалентной платины. Отдельные кислоты на платину не действуют. Растворяется платина только в царской водке, но значительно труднее, чем золото. При помощи царской водки платина извлекается из руды. При взаимодействии платины с царской водкой образуется платинохлористоводородная кислота H2[PtCl6], при выпаривании раствора этой кислоты выделяются красно-бурые кристаллы состава H2[PtCl6]*6H2O.
Оксиды и гидроксиды платины (II) обладают черным цветом и нерастворимы в воде. Диоксид и дисульфид платины устойчивы к кислотам. Комплексные соединения платины (II) образуются с аминными лигандами, органическими лигандами, очень устойчивы цианидные комплексы. Платиносинеродистоводородная кислота H2[Pt(CN)4]. Бариевая соль этой кислоты Ba[Pt(CN)4] обнаруживает яркую флуоресценцию при действии на нее ультрафиолетовых и рентгеновских лучей. В связи с этим, она применялась для покрытия флуоресцирующих экранов.
Известны комплексные соединения в которых Pt(II) одновременно входит в состав катионов и анионов, например [Рt(NН3)4][РtСl4]. Это соединение(зеленого цвета) осаждается при смешении растворов [Рt(NН3)4]Сl2 и K2[PtCl4]:
При растворении гидроксида платины (IV) PtO2*nH2O в кислотах и щелочах образуются комплексы анионного типа, например:
Аммонийную соль (NH4)2PtCl6 используют для выделения платины из растворов при ее переработке, поскольку дальнейший термолиз этой соли приводит к получению металлической платины (в виде мелкодисперсного черного порошка с сильно развитой поверхностью — так называемой платиновой черни):
Techemy 2009
e-mail: techemycom@gmail.com
bitcoin accepted here